FANDOM


The tridecahendon is the 12 dimensional simplex.

Dimensionality Negative First Zeroth First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth Eleventh Twelfth Thirteenth Fourteenth Fifteenth Sixteenth ... Omegath
Simplex

\{3^{n-1}\}

Null polytope

\emptyset

Point

()
\mathbb{B}^0

Line segment

\{\}
\mathbb{B}^1

Triangle

\{3\}

Tetrahedron

\{3^2\}

Pentachoron

\{3^3\}

Hexateron

\{3^4\}

Heptapeton

\{3^5\}

Octaexon

\{3^6\}

Enneazetton

\{3^7\}

Decayotton

\{3^8\}

Hendecaxennon

\{3^9\}

Dodecadakon

\{3^{10}\}

Tridecahendon

\{3^{11}\}

Tetradecadokon

\{3^{12}\}

Pentadecatradakon

\{3^{13}\}

Hexadecatedakon

\{3^{14}\}

Heptdecapedakon

\{3^{15}\}

... Omegasimplex

\{3^{\aleph_0}\}

Cross

\{3^{n-2},4\}

Square

\{4\}

Octahedron

\{3, 4\}

Hexadecachoron

\{3^2, 4\}

Pentacross

\{3^3, 4\}

Hexacross

\{3^4, 4\}

Heptacross

\{3^5, 4\}

Octacross

\{3^6, 4\}

Enneacross

\{3^7, 4\}

Dekacross

\{3^8, 4\}

Hendekacross

\{3^9, 4\}

Dodekacross

\{3^{10}, 4\}

Tridekacross

\{3^{11}, 4\}

Tetradekacross

\{3^{12}, 4\}

Pentadekacross

\{3^{13}, 4\}

Hexadekacross

\{3^{14}, 4\}

... Omegacross

\{3^{\aleph_0}, 4\}

Hydrotopes

\{3^{n-2}, 5\}

Pentagon

\{5\}

Icosahedron

\{3, 5\}

Hexacosichoron

\{3^2, 5\}

Order-5 pentachoric honeycomb

\{3^3, 5\}

Hypercube

\{4, 3^{n-2}\}

Square

\{4\}

Cube

\{4, 3\}

Tesseract

\{4, 3^2\}

Penteract

\{4, 3^3\}

Hexeract

\{4, 3^4\}

Hepteract

\{4, 3^5\}

Octeract

\{4, 3^6\}

Enneract

\{4, 3^7\}

Dekeract

\{4, 3^8\}

Hendekeract

\{4, 3^9\}

Dodekeract

\{4, 3^{10}\}

Tridekeract

\{4, 3^{11}\}

Tetradekeract

\{4, 3^{12}\}

Pentadekeract

\{4, 3^{13}\}

Hexadekeract

\{4, 3^{14}\}

... Omegeract

\{4, 3^{\aleph_0}\}

Cosmotopes

\{5, 3^{n-2}\}

Pentagon

\{5\}

Dodecahedron

\{5, 3\}

Hecatonicosachoron

\{5, 3^2\}

Order-3 hecatonicosachoric honeycomb

\{5, 3^3\}

Hyperball

\mathbb B^n

Disk

\mathbb B^2

Ball

\mathbb B^3

Gongol

\mathbb B^4

Pentorb

\mathbb B^5

Hexorb

\mathbb B^6

Heptorb

\mathbb B^7

Octorb

\mathbb B^8

Enneorb

\mathbb B^9

Dekorb

\mathbb B^{10}

Hendekorb

\mathbb B^{11}

Dodekorb

\mathbb B^{12}

Tridekorb

\mathbb B^{13}

Tetradekorb

\mathbb B^{14}

Pentadekorb

\mathbb B^{15}

Hexadekorb

\mathbb B^{16}

... Omegaball

\mathbb B^{\aleph_0}

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.