FANDOM


The triangular tiling is a regular tiling formed from a plane filled with triangles. Six triangles join at each vertex. Its Bowers acronym is trat.

Structure and Sections

This tiling can also be given a coloring where the triangles have alternating colors around a vertex. This is the base of the 3-3-3 triangle group.

Subfacets

See also

$ \{2,6\} $ $ \{3,6\} $ $ \{4,6\} $ $ \{5,6\} $ $ \{6,6\} $ ... $ \{\aleph_0,6\} $
Hexagonal hosohedron Triangular tiling Order-6 square tiling Order-6 pentagonal tiling Order-6 hexagonal tiling ... Order-6 apeirogonal tiling
$ \{3,2\} $ $ \{3,3\} $ $ \{3,4\} $ $ \{3,5\} $ $ \{3,6\} $ $ \{3,7\} $ $ \{3,8\} $ ... $ \{3,\aleph_0\} $
Trigonal dihedron Tetrahedron Octahedron Icosahedron Triangular tiling Order-7 triangular tiling Order-8 triangular tiling ... Infinite-order triangular tiling
Regular
$ t_0 \{6,3\} $
Rectified
$ t_1 \{6,3\} $
Birectified
$ t_2 \{6,3\} $
Truncated
$ t_{0,1} \{6,3\} $
Bitruncated
$ t_{1,2} \{6,3\} $
Cantellated
$ t_{0,2} \{6,3\} $
Cantitruncated
$ t_{0,1,2} \{6,3\} $
Hexagonal tiling Trihexagonal tiling Triangular tiling Truncated hexagonal tiling Hexagonal tiling Rhombitrihexagonal tiling Omnitruncated trihexagonal tiling
Regular
$ t_0 \{(3,3,3,)\} $
Rectified
$ t_1 \{(3,3,3,)\} $
Birectified
$ t_2 \{(3,3,3,)\} $
Truncated
$ t_{0,1} \{(3,3,3,)\} $
Bitruncated
$ t_{1,2} \{(3,3,3,)\} $
Cantellated
$ t_{0,2} \{(3,3,3,)\} $
Cantitruncated
$ t_{0,1,2} \{(3,3,3,)\} $
Triangular tiling Triangular tiling Triangular tiling Trihexagonal tiling Trihexagonal tiling Trihexagonal tiling Hexagonal tiling