FANDOM


A protoverse is a universe within its own origin; the "singularity" or infinitely small point just before the Big Bang. In particular, it can be used to refer to the point leading up to our own universe.

Protoverses are 0D. Thus the instant a protoverse "exists", it immediately turns into Big Bang which like most universal births, creates the universe over a span of billions of years.

Brane collisions create protoverses at their impact point, which then explode outwards into new branes.

See Also

Dimensionality Negative First Zeroth First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth Eleventh Twelfth Thirteenth Fourteenth Fifteenth Sixteenth ... Omegath
-verse Nullverse Protoverse Lineverse Planeverse Realmverse Fluneverse Pentrealmverse Hexealmverse Heptealmverse Octealmverse Ennealmverse Decealmverse Hendecealmverse Dodecealmverse Tridecealmverse Tetradecealmverse Pentadecealmverse Hexadecealmverse ... Omegealmverse
Hyperbolic space

\mathbb H^{n}

Null polytope

\emptyset

Point

\mathbb H^{0}

Hyperbolic branch

\mathbb H^{1}

Hyperbolic plane

\mathbb H^{2}

Hyperbolic realm

\mathbb H^{3}

Hyperbolic flune

\mathbb H^{4}

Hyperbolic pentrealm

\mathbb H^{5}

Hyperbolic hexealm

\mathbb H^{6}

Hyperbolic heptealm

\mathbb H^{7}

Hyperbolic octealm

\mathbb H^{8}

Hyperbolic ennealm

\mathbb H^{9}

Hyperbolic decealm

\mathbb H^{10}

Hyperbolic hendecealm

\mathbb H^{11}

Hyperbolic dodecealm

\mathbb H^{12}

Hyperbolic tridecealm

\mathbb H^{13}

Hyperbolic tetradecealm

\mathbb H^{14}

Hyperbolic pentadecealm

\mathbb H^{15}

Hyperbolic hexadecealm

\mathbb H^{16}

... Hyperbolic omegealm

\mathbb H^{\aleph_0}

Euclidean space

\mathbb R^{n}

Null polytope

\emptyset

Point

\mathbb R^{0}

Euclidean line

\mathbb R^{1}

Euclidean plane

\mathbb R^{2}

Euclidean realm

\mathbb R^{3}

Euclidean flune

\mathbb R^{4}

Euclidean pentrealm

\mathbb R^{5}

Euclidean hexealm

\mathbb R^{6}

Euclidean heptealm

\mathbb R^{7}

Euclidean octealm

\mathbb R^{8}

Euclidean ennealm

\mathbb R^{9}

Euclidean decealm

\mathbb R^{10}

Euclidean hendecealmverse

\mathbb R^{11}

Euclidean dodecealmverse

\mathbb R^{12}

Euclidean tridecealm

\mathbb R^{13}

Euclidean tetradecealm

\mathbb R^{14}

Euclidean pentadecealm

\mathbb R^{15}

Euclidean hexadecealm

\mathbb R^{16}

... Euclidean omegealm

\mathbb R^{\aleph_0}

Hypersphere

\mathbb S^{n}

Null polytope

\emptyset

Point pair

\mathbb S^{0}

Circle

\mathbb S^{1}

Sphere

\mathbb S^{2}

Glome

\mathbb S^{3}

Tetrasphere

\mathbb S^{4}

Pentasphere

\mathbb S^{5}

Hexasphere

\mathbb S^{6}

Heptasphere

\mathbb S^{7}

Octasphere

\mathbb S^{8}

Enneasphere

\mathbb S^{9}

Dekasphere

\mathbb S^{10}

Hendekasphere

\mathbb S^{11}

Dodekasphere

\mathbb S^{12}

Tridekasphere

\mathbb S^{13}

Tetradekasphere

\mathbb S^{14}

Pentadekasphere

\mathbb S^{15}

Hexadekasphere

\mathbb S^{16}

... Omegasphere

\mathbb S^{\aleph_0}

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.