FANDOM


A point is a position, with a size equal to 0. This does not mean an entire region however. It is defined by Euclid as "that which has no part", which is an apt description - a point has no height, width, depth, or any other measure in any other dimension.

Furthermore a point can also be thought of as a 'dimensionless' coordinate, meaning a coordinate without a definite numerical or algebraic value.

It is also the only zero dimensional shape, and any zero- dimensional space consists of a single point and nothing else. This means that it can be considered as a zero- dimensional space of infinite extent, in analogue with the plane.

A line can be thought of as consisting of an uncountably infinite amount of points placed directly adjacent to each other in the same direction.

Likewise, a plane can be thought of as consisting of an infinite amount of parallel lines that are infinitely close.

In our Universe, nothing is smaller than a point. In different Universes, the concept of negative dimensions may exist. We, living in our Universe cannot imagine negative dimensions. There are fractional dimensions, but not negative dimensions.

The point represents the idea of unity in many religions and ethnic groups.

Structure and Sections

Hypervolumes

Subfacets

  • 1 point (0D)

Notations

  • Toratopic notation: .
  • Tapertopic notation: 0

Related shapes

See also

Dimensionality Negative First Zeroth First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth Eleventh Twelfth Thirteenth Fourteenth Fifteenth Sixteenth ... Omegath
Simplex

\{3^{n-1}\}

Null polytope

\emptyset

Point

()
\mathbb{B}^0

Line segment

\{\}
\mathbb{B}^1

Triangle

\{3\}

Tetrahedron

\{3^2\}

Pentachoron

\{3^3\}

Hexateron

\{3^4\}

Heptapeton

\{3^5\}

Octaexon

\{3^6\}

Enneazetton

\{3^7\}

Decayotton

\{3^8\}

Hendecaxennon

\{3^9\}

Dodecadakon

\{3^{10}\}

Tridecahendon

\{3^{11}\}

Tetradecadokon

\{3^{12}\}

Pentadecatradakon

\{3^{13}\}

Hexadecatedakon

\{3^{14}\}

Heptadecapedakon

\{3^{15}\}

... Omegasimplex

\{3^{\aleph_0}\}

Cross

\{3^{n-2},4\}

Square

\{4\}

Octahedron

\{3, 4\}

Hexadecachoron

\{3^2, 4\}

Pentacross

\{3^3, 4\}

Hexacross

\{3^4, 4\}

Heptacross

\{3^5, 4\}

Octacross

\{3^6, 4\}

Enneacross

\{3^7, 4\}

Dekacross

\{3^8, 4\}

Hendekacross

\{3^9, 4\}

Dodekacross

\{3^{10}, 4\}

Tridekacross

\{3^{11}, 4\}

Tetradekacross

\{3^{12}, 4\}

Pentadekacross

\{3^{13}, 4\}

Hexadekacross

\{3^{14}, 4\}

... Omegacross

\{3^{\aleph_0}, 4\}

Hydrotopes

\{3^{n-2}, 5\}

Pentagon

\{5\}

Icosahedron

\{3, 5\}

Hexacosichoron

\{3^2, 5\}

Order-5 pentachoric honeycomb

\{3^3, 5\}

Hypercube

\{4, 3^{n-2}\}

Square

\{4\}

Cube

\{4, 3\}

Tesseract

\{4, 3^2\}

Penteract

\{4, 3^3\}

Hexeract

\{4, 3^4\}

Hepteract

\{4, 3^5\}

Octeract

\{4, 3^6\}

Enneract

\{4, 3^7\}

Dekeract

\{4, 3^8\}

Hendekeract

\{4, 3^9\}

Dodekeract

\{4, 3^{10}\}

Tridekeract

\{4, 3^{11}\}

Tetradekeract

\{4, 3^{12}\}

Pentadekeract

\{4, 3^{13}\}

Hexadekeract

\{4, 3^{14}\}

... Omegeract

\{4, 3^{\aleph_0}\}

Cosmotopes

\{5, 3^{n-2}\}

Pentagon

\{5\}

Dodecahedron

\{5, 3\}

Hecatonicosachoron

\{5, 3^2\}

Order-3 hecatonicosachoric honeycomb

\{5, 3^3\}

Hyperball

\mathbb B^n

Disk

\mathbb B^2

Ball

\mathbb B^3

Gongol

\mathbb B^4

Pentorb

\mathbb B^5

Hexorb

\mathbb B^6

Heptorb

\mathbb B^7

Octorb

\mathbb B^8

Enneorb

\mathbb B^9

Dekorb

\mathbb B^{10}

Hendekorb

\mathbb B^{11}

Dodekorb

\mathbb B^{12}

Tridekorb

\mathbb B^{13}

Tetradekorb

\mathbb B^{14}

Pentadekorb

\mathbb B^{15}

Hexadekorb

\mathbb B^{16}

... Omegaball

\mathbb B^{\aleph_0}

Dimensionality Negative First Zeroth First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth Eleventh Twelfth Thirteenth Fourteenth Fifteenth Sixteenth ... Omegath
-verse Nullverse Protoverse Lineverse Planeverse Realmverse Fluneverse Pentrealmverse Hexealmverse Heptealmverse Octealmverse Ennealmverse Decealmverse Hendecealmverse Dodecealmverse Tridecealmverse Tetradecealmverse Pentadecealmverse Hexadecealmverse ... Omegealmverse
Hyperbolic space

\mathbb H^{n}

Null polytope

\emptyset

Point

\mathbb H^{0}

(Hyperbola) Hyperbolic plane

\mathbb H^{2}

Hyperbolic realm

\mathbb H^{3}

Hyperbolic flune

\mathbb H^{4}

Hyperbolic pentrealm

\mathbb H^{5}

Hyperbolic hexealm

\mathbb H^{6}

Hyperbolic heptealm

\mathbb H^{7}

Hyperbolic octealm

\mathbb H^{8}

Hyperbolic ennealm

\mathbb H^{9}

Hyperbolic decealm

\mathbb H^{10}

Hyperbolic hendecealm

\mathbb H^{11}

Hyperbolic dodecealm

\mathbb H^{12}

Hyperbolic tridecealm

\mathbb H^{13}

Hyperbolic tetradecealm

\mathbb H^{14}

Hyperbolic pentadecealm

\mathbb H^{15}

Hyperbolic hexadecealm

\mathbb H^{16}

... Hyperbolic omegealm

\mathbb H^{\aleph_0}

Euclidean space

\mathbb R^{n}

Null polytope

\emptyset

Point

\mathbb R^{0}

Euclidean line

\mathbb R^{1}

Euclidean plane

\mathbb R^{2}

Euclidean realm

\mathbb R^{3}

Euclidean flune

\mathbb R^{4}

Euclidean pentrealm

\mathbb R^{5}

Euclidean hexealm

\mathbb R^{6}

Euclidean heptealm

\mathbb R^{7}

Euclidean octealm

\mathbb R^{8}

Euclidean ennealm

\mathbb R^{9}

Euclidean decealm

\mathbb R^{10}

Euclidean hendecealmverse

\mathbb R^{11}

Euclidean dodecealmverse

\mathbb R^{12}

Euclidean tridecealm

\mathbb R^{13}

Euclidean tetradecealm

\mathbb R^{14}

Euclidean pentadecealm

\mathbb R^{15}

Euclidean hexadecealm

\mathbb R^{16}

... Euclidean omegealm

\mathbb R^{\aleph_0}

Hypersphere

\mathbb S^{n}

Null polytope

\emptyset

Point pair

\mathbb S^{0}

Circle

\mathbb S^{1}

Sphere

\mathbb S^{2}

Glome

\mathbb S^{3}

Tetrasphere

\mathbb S^{4}

Pentasphere

\mathbb S^{5}

Hexasphere

\mathbb S^{6}

Heptasphere

\mathbb S^{7}

Octasphere

\mathbb S^{8}

Enneasphere

\mathbb S^{9}

Dekasphere

\mathbb S^{10}

Hendekasphere

\mathbb S^{11}

Dodekasphere

\mathbb S^{12}

Tridekasphere

\mathbb S^{13}

Tetradekasphere

\mathbb S^{14}

Pentadekasphere

\mathbb S^{15}

Hexadekasphere

\mathbb S^{16}

... Omegasphere

\mathbb S^{\aleph_0}

Spatial Dimensionality

0 1 2 3 4 5 ...

Temporal Dimensionality

0 Point

\mathbb R^{0}

Euclidean line

\mathbb R^{1}

Euclidean plane

\mathbb R^{2}

Euclidean realm

\mathbb R^{3}

Euclidean flune

\mathbb R^{4}

Euclidean pentrealm

\mathbb R^{5}

...
1 Timeline

\mathbb R^{0, 1}

Minkowski plane

\mathbb R^{1, 1}

Minkowski realm

\mathbb R^{2, 1}

Minkowski flune

\mathbb R^{3, 1}

Minkowski pentrealm

\mathbb R^{4, 1}

Minkowski hexealm

\mathbb R^{5, 1}

...
2 Timeplane

\mathbb R^{0, 2}

Minkowski realm

\mathbb R^{1, 2}

Minkowski flune

\mathbb R^{2, 2}

Minkowski pentrealm

\mathbb R^{3, 2}

Minkowski hexealm

\mathbb R^{4, 2}

Minkowski heptealm

\mathbb R^{5, 2}

...
3 Timerealm

\mathbb R^{0, 3}

Minkowski flune

\mathbb R^{1, 3}

Minkowski pentrealm

\mathbb R^{2, 3}

Minkowski hexealm

\mathbb R^{3, 3}

Minkowski heptealm

\mathbb R^{4, 3}

Minkowski octealm

\mathbb R^{5, 3}

...
4 Timeflune

\mathbb R^{0, 4}

Minkowski pentrealm

\mathbb R^{1, 4}

Minkowski hexealm

\mathbb R^{2, 4}

Minkowski heptealm

\mathbb R^{3, 4}

Minkowski octealm

\mathbb R^{4, 4}

Minkowski ennealm

\mathbb R^{5, 4}

...
5 Time-pentrealm

\mathbb R^{0, 5}

Minkowski hexealm

\mathbb R^{1, 5}

Minkowski heptealm

\mathbb R^{2, 5}

Minkowski octealm

\mathbb R^{3, 5}

Minkowski ennealm

\mathbb R^{4, 5}

Minkowski decealm

\mathbb R^{5, 5}

...
... ... ... ... ... ... ... ...
-verse Dimensionality 0 1 2 3 ...
Real space

\mathbb {R}^n

Point

\mathbb {R}^0

Real line

\mathbb {R}^1

Real plane

\mathbb {R}^2

Real realm

\mathbb {R}^3

...
Real projective space

\mathbb {R}\mathbb{P}^n

Point pair

\mathbb {R}\mathbb{P}^0

Real projective line

\mathbb {R}\mathbb{P}^1

Real projective plane

\mathbb {R}\mathbb{P}^2

Real projective realm

\mathbb {R}\mathbb{P}^3

...
Complexverse Complex space

\mathbb {C}^n

Point

\mathbb {C}^0

Complex line

\mathbb {C}^1

Complex plane

\mathbb {C}^2

Complex realm

\mathbb {C}^3

...
Complex projective space

\mathbb {C}\mathbb{P}^n

Point pair

\mathbb {C}\mathbb{P}^0

Complex projective line

\mathbb {C}\mathbb{P}^1

Complex projective plane

\mathbb {C}\mathbb{P}^2

Complex projective realm

\mathbb {C}\mathbb{P}^3

...
Quaterniverse Quaternionic space

\mathbb {H}^n

Point

\mathbb {H}^0

Quaternionic line

\mathbb {H}^1

Quaternionic plane

\mathbb {H}^2

Quaternionic realm

\mathbb {H}^3

...
Quaternionic projective space

\mathbb {H}\mathbb{P}^n

Point pair

\mathbb {H}\mathbb{P}^0

Quaternionic projective line

\mathbb {H}\mathbb{P}^1

Quaternionic projective plane

\mathbb {H}\mathbb{P}^2

Quaternionic projective realm

\mathbb {H}\mathbb{P}^3

...
Octoniverse Octonionic space

\mathbb {O}^n

Point

\mathbb {O}^0

Octonionic line

\mathbb {O}^1

Octonionic plane

\mathbb {O}^2

Octonionic realm

\mathbb {O}^3

...
Octonionic projective space

\mathbb {O}\mathbb{P}^n

Point pair

\mathbb {O}\mathbb{P}^0

Octonionic projective line

\mathbb {O}\mathbb{P}^1

Octonionic projective plane

\mathbb {O}\mathbb{P}^2

Octonionic projective realm

\mathbb {O}\mathbb{P}^3

...
Sedeniverse Sedenionic space

\mathbb {S}^n

Point

\mathbb {S}^0

Sedenionic line

\mathbb {S}^1

Sedenionic plane

\mathbb {S}^2

Sedenionic realm

\mathbb {S}^3

...
Sedenionic projective space

\mathbb {S}\mathbb{P}^n

Point pair

\mathbb {S}\mathbb{P}^0

Sedenionic projective line

\mathbb {S}\mathbb{P}^1

Sedenionic projective plane

\mathbb {S}\mathbb{P}^2

Sedenionic projective realm

\mathbb {S}\mathbb{P}^3

...
... ... ... ... ... ... ...