FANDOM


A planeverse is a universe that is crushed into a 2-Dimensional Space. All objects in a planeverse exist in only two spacial dimensions (and usually one or more temporal dimensions as well). Life might be possible in a planeverse, but not according to Earth's biological principles; an organism in a planeverse would have a digestive tract that cut it in half, most likely killing it or otherwise rendering it unable to live very well.

The most classic example of a planeverse is Edwin A. Abbott's Flatland[1], a book about a square in a two-dimensional world of polygons and lines who is visited by a three-dimensional sphere and taught about how higher dimensions work.

See Also

Dimensionality Zero One Two Three Four Five Six Seven Eight Nine Ten Eleven Twelve Thirteen Fourteen Fifteen Sixteen ... Aleph null
Hyperbolic space

$ \mathbb H^{n} $

Hyperbolic plane

$ \mathbb H^{2} $

Hyperbolic realm

$ \mathbb H^{3} $

Hyperbolic flune

$ \mathbb H^{4} $

Hyperbolic pentrealm

$ \mathbb H^{5} $

Hyperbolic hexealm

$ \mathbb H^{6} $

Hyperbolic heptealm

$ \mathbb H^{7} $

Hyperbolic octealm

$ \mathbb H^{8} $

Hyperbolic ennealm

$ \mathbb H^{9} $

Hyperbolic decealm

$ \mathbb H^{10} $

Hyperbolic hendecealm

$ \mathbb H^{11} $

Hyperbolic dodecealm

$ \mathbb H^{12} $

Hyperbolic tridecealm

$ \mathbb H^{13} $

Hyperbolic tetradecealm

$ \mathbb H^{14} $

Hyperbolic pentadecealm

$ \mathbb H^{15} $

Hyperbolic hexadecealm

$ \mathbb H^{16} $

... Hyperbolic omegealm

$ \mathbb R^{\aleph_0} $

Euclidean space

$ \mathbb R^{n} $

Point

$ \mathbb R^{0} $

Euclidean line

$ \mathbb R^{1} $

Euclidean plane

$ \mathbb R^{2} $

Euclidean realm

$ \mathbb R^{3} $

Euclidean flune

$ \mathbb R^{4} $

Euclidean pentrealm

$ \mathbb R^{5} $

Euclidean hexealm

$ \mathbb R^{6} $

Euclidean heptealm

$ \mathbb R^{7} $

Euclidean octealm

$ \mathbb R^{8} $

Euclidean ennealm

$ \mathbb R^{9} $

Euclidean decealm

$ \mathbb R^{10} $

Euclidean hendecealmverse

$ \mathbb R^{11} $

Euclidean dodecealmverse

$ \mathbb R^{12} $

Euclidean tridecealm

$ \mathbb R^{13} $

Euclidean tetradecealm

$ \mathbb R^{14} $

Euclidean pentadecealm

$ \mathbb R^{15} $

Euclidean hexadecealm

$ \mathbb R^{16} $

... Euclidean omegealm

$ \mathbb R^{\aleph_0} $

Hypersphere

$ \mathbb S^{n} $

Point pair

$ \mathbb S^{0} $

Circle

$ \mathbb S^{1} $

Sphere

$ \mathbb S^{2} $

Glome

$ \mathbb S^{3} $

Tetrasphere

$ \mathbb S^{4} $

Pentasphere

$ \mathbb S^{5} $

Hexasphere

$ \mathbb S^{6} $

Heptasphere

$ \mathbb S^{7} $

Octasphere

$ \mathbb S^{8} $

Enneasphere

$ \mathbb S^{9} $

Dekasphere

$ \mathbb S^{10} $

Hendekasphere

$ \mathbb S^{11} $

Dodekasphere

$ \mathbb S^{12} $

Tridekasphere

$ \mathbb S^{13} $

Tetradekasphere

$ \mathbb S^{14} $

Pentadekasphere

$ \mathbb S^{15} $

Hexadekasphere

$ \mathbb S^{16} $

... Omegasphere

$ \mathbb S^{\aleph_0} $

References

  1. Abbott, Edwin A. (1884). Flatland: A Romance in Many Dimensions.