FANDOM


A pentrealmverse is a universe that occupies 5-Dimensional Space.

As usual, pentrealmverses may have one or more temporal dimensions, or theoretically none - but a universe without time is a universe without an origin, which violates causality and is generally not permissible within the confines of low-level -verses like multiverses or megaverses.

See Also

Dimensionality Negative First Zeroth First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth Eleventh Twelfth Thirteenth Fourteenth Fifteenth Sixteenth ... Omegath
Hyperbolic space

$ \mathbb H^{n} $

Null polytope

$ \emptyset $

Point

$ \mathbb H^{0} $

Hyperbola

$ \mathbb H^{1} $

Hyperbolic plane

$ \mathbb H^{2} $

Hyperbolic realm

$ \mathbb H^{3} $

Hyperbolic flune

$ \mathbb H^{4} $

Hyperbolic pentrealm

$ \mathbb H^{5} $

Hyperbolic hexealm

$ \mathbb H^{6} $

Hyperbolic heptealm

$ \mathbb H^{7} $

Hyperbolic octealm

$ \mathbb H^{8} $

Hyperbolic ennealm

$ \mathbb H^{9} $

Hyperbolic decealm

$ \mathbb H^{10} $

Hyperbolic hendecealm

$ \mathbb H^{11} $

Hyperbolic dodecealm

$ \mathbb H^{12} $

Hyperbolic tridecealm

$ \mathbb H^{13} $

Hyperbolic tetradecealm

$ \mathbb H^{14} $

Hyperbolic pentadecealm

$ \mathbb H^{15} $

Hyperbolic hexadecealm

$ \mathbb H^{16} $

... Hyperbolic omegealm

$ \mathbb H^{\aleph_0} $

Euclidean space

$ \mathbb R^{n} $

Null polytope

$ \emptyset $

Point

$ \mathbb R^{0} $

Euclidean line

$ \mathbb R^{1} $

Euclidean plane

$ \mathbb R^{2} $

Euclidean realm

$ \mathbb R^{3} $

Euclidean flune

$ \mathbb R^{4} $

Euclidean pentrealm

$ \mathbb R^{5} $

Euclidean hexealm

$ \mathbb R^{6} $

Euclidean heptealm

$ \mathbb R^{7} $

Euclidean octealm

$ \mathbb R^{8} $

Euclidean ennealm

$ \mathbb R^{9} $

Euclidean decealm

$ \mathbb R^{10} $

Euclidean hendecealmverse

$ \mathbb R^{11} $

Euclidean dodecealmverse

$ \mathbb R^{12} $

Euclidean tridecealm

$ \mathbb R^{13} $

Euclidean tetradecealm

$ \mathbb R^{14} $

Euclidean pentadecealm

$ \mathbb R^{15} $

Euclidean hexadecealm

$ \mathbb R^{16} $

... Euclidean omegealm

$ \mathbb R^{\aleph_0} $

Hypersphere

$ \mathbb S^{n} $

Null polytope

$ \emptyset $

Point pair

$ \mathbb S^{0} $

Circle

$ \mathbb S^{1} $

Sphere

$ \mathbb S^{2} $

Glome

$ \mathbb S^{3} $

Tetrasphere

$ \mathbb S^{4} $

Pentasphere

$ \mathbb S^{5} $

Hexasphere

$ \mathbb S^{6} $

Heptasphere

$ \mathbb S^{7} $

Octasphere

$ \mathbb S^{8} $

Enneasphere

$ \mathbb S^{9} $

Dekasphere

$ \mathbb S^{10} $

Hendekasphere

$ \mathbb S^{11} $

Dodekasphere

$ \mathbb S^{12} $

Tridekasphere

$ \mathbb S^{13} $

Tetradekasphere

$ \mathbb S^{14} $

Pentadekasphere

$ \mathbb S^{15} $

Hexadekasphere

$ \mathbb S^{16} $

... Omegasphere

$ \mathbb S^{\aleph_0} $