FANDOM



A pentagon is a 2-dimensional polygon with five edges. The Bowers acronym for a pentagon is peg. It is called a cosmogon, hydrogon, or a rhodogon under the elemental naming scheme.

Structure and Sections

The regular pentagon has equal edges and each angle being 108 degrees.

Hypervolumes

  • vertex count = 5
  • edge length = 5l
  • surface area = \frac{\sqrt{5(5+2\sqrt{5})}}{4} {l}^{2}

Subfacets

See Also

\{1\} \{2\} \{3\} \{4\} \{5\} \{6\} \{7\} \{8\} \{9\} \{10\} \{11\} \{12\} \{13\} \{14\} \{15\} \{16\} ... \{\aleph_0\}
Monogon Digon Triangle Square Pentagon Hexagon Heptagon Octagon Enneagon Decagon Hendecagon Dodecagon Tridecagon Tetradecagon Pentadecagon Hexadecagon ... Apeirogon
Regular
t_0 \{5\}
Rectified
t_1 \{5\}
Truncated
t_{0,1} \{5\}
Pentagon Pentagon Decagon
Dimensionality Negative First Zeroth First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth Eleventh Twelfth Thirteenth Fourteenth Fifteenth Sixteenth ... Omegath
Simplex

\{3^{n-1}\}

Null polytope

\emptyset

Point

()
\mathbb{B}^0

Line segment

\{\}
\mathbb{B}^1

Triangle

\{3\}

Tetrahedron

\{3^2\}

Pentachoron

\{3^3\}

Hexateron

\{3^4\}

Heptapeton

\{3^5\}

Octaexon

\{3^6\}

Enneazetton

\{3^7\}

Decayotton

\{3^8\}

Hendecaxennon

\{3^9\}

Dodecadakon

\{3^{10}\}

Tridecahendon

\{3^{11}\}

Tetradecadokon

\{3^{12}\}

Pentadecatradakon

\{3^{13}\}

Hexadecatedakon

\{3^{14}\}

Heptdecapedakon

\{3^{15}\}

... Omegasimplex

\{3^{\aleph_0}\}

Cross

\{3^{n-2},4\}

Square

\{4\}

Octahedron

\{3, 4\}

Hexadecachoron

\{3^2, 4\}

Pentacross

\{3^3, 4\}

Hexacross

\{3^4, 4\}

Heptacross

\{3^5, 4\}

Octacross

\{3^6, 4\}

Enneacross

\{3^7, 4\}

Dekacross

\{3^8, 4\}

Hendekacross

\{3^9, 4\}

Dodekacross

\{3^{10}, 4\}

Tridekacross

\{3^{11}, 4\}

Tetradekacross

\{3^{12}, 4\}

Pentadekacross

\{3^{13}, 4\}

Hexadekacross

\{3^{14}, 4\}

... Omegacross

\{3^{\aleph_0}, 4\}

Hydrotopes

\{3^{n-2}, 5\}

Pentagon

\{5\}

Icosahedron

\{3, 5\}

Hexacosichoron

\{3^2, 5\}

Order-5 pentachoric honeycomb

\{3^3, 5\}

Hypercube

\{4, 3^{n-2}\}

Square

\{4\}

Cube

\{4, 3\}

Tesseract

\{4, 3^2\}

Penteract

\{4, 3^3\}

Hexeract

\{4, 3^4\}

Hepteract

\{4, 3^5\}

Octeract

\{4, 3^6\}

Enneract

\{4, 3^7\}

Dekeract

\{4, 3^8\}

Hendekeract

\{4, 3^9\}

Dodekeract

\{4, 3^{10}\}

Tridekeract

\{4, 3^{11}\}

Tetradekeract

\{4, 3^{12}\}

Pentadekeract

\{4, 3^{13}\}

Hexadekeract

\{4, 3^{14}\}

... Omegeract

\{4, 3^{\aleph_0}\}

Cosmotopes

\{5, 3^{n-2}\}

Pentagon

\{5\}

Dodecahedron

\{5, 3\}

Hecatonicosachoron

\{5, 3^2\}

Order-3 hecatonicosachoric honeycomb

\{5, 3^3\}

Hyperball

\mathbb B^n

Disk

\mathbb B^2

Ball

\mathbb B^3

Gongol

\mathbb B^4

Pentorb

\mathbb B^5

Hexorb

\mathbb B^6

Heptorb

\mathbb B^7

Octorb

\mathbb B^8

Enneorb

\mathbb B^9

Dekorb

\mathbb B^{10}

Hendekorb

\mathbb B^{11}

Dodekorb

\mathbb B^{12}

Tridekorb

\mathbb B^{13}

Tetradekorb

\mathbb B^{14}

Pentadekorb

\mathbb B^{15}

Hexadekorb

\mathbb B^{16}

... Omegaball

\mathbb B^{\aleph_0}

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.