FANDOM


The order-3 apeirogonal tiling is a regular hyperbolic tiling formed from apeirogons joining three to a vertex.

This tiling can also be constructed as the truncated infinite-order apeirogonal tiling, or as an omnitruncation of the triple-infinite loop group.

See also

$ \{2,3\} $ $ \{3,3\} $ $ \{4,3\} $ $ \{5,3\} $ $ \{6,3\} $ $ \{7,3\} $ $ \{8,3\} $ ... $ \{\aleph_0,3\} $
Trigonal hosohedron Tetrahedron Cube Dodecahedron Hexagonal tiling Order-3 heptagonal tiling Order-3 octagonal tiling ... Order-3 apeirogonal tiling
$ \{\aleph_0,2\} $ $ \{\aleph_0,3\} $ $ \{\aleph_0,4\} $ $ \{\aleph_0,5\} $ $ \{\aleph_0,6\} $ $ \{\aleph_0,7\} $ $ \{\aleph_0,8\} $ ... $ \{\aleph_0,\aleph_0\} $
Apeirogonal dihedron Order-3 apeirogonal tiling Order-4 apeirogonal tiling Order-5 apeirogonal tiling Order-6 apeirogonal tiling Order-7 apeirogonal tiling Order-8 apeirogonal tiling ... Infinite-order apeirogonal tiling

Template:Variant Nav aleph 0 3 Template:Variant Nav aleph 0 aleph 0 Template:Variant Nav loop aaa